スキップしてメイン コンテンツに移動

野生児





1,野生児とは






早期の成長・発達期に親の養育を受けずに、

人間社会から隔離された環境のなかで動物とともに生活した子どもを総称する。


親から遺棄されたり、野獣にさらわれたりして動物たちとともに生活する子どもは

物語によく登場するが、実際に発見された子供はヨーロッパを中心にして

数十例の報告がある。




とくに有名な記録は、18世紀末フランス、アベロン地区コーヌの森で発見され

教育者イタールにより訓練された11~12歳の少年ビクトール(アベロン

の野生児)、

20世紀初めにインド、ミドナポルの森でオオカミに育てられた

およそ8歳と2歳の2人の少女(アマラカマラ)などの教育訓練・養育の記録で、

広く公刊され、学問的にも価値が高い。



 これらの野生児はいずれも発見されたときには言語をもたず、

人間としての感情に欠け、野生としての行動が特徴であった。

野生児たちの行動や生活の様式は、

文明社会に生きる人間とは著しく異なっていたことが記録されている。




ビクトールには教育実験ともいうべき訓練がなされたが、その訓練の仮説は、

「単に野性的で正常な社会的刺激を奪われているにすぎず、

適切な訓練によって人間としての行動や生活の様式が身につけられる」として

訓練が開始されたが、目標を達成できず失敗した。


アマラカマラは、食物を直接口で食べたり、四肢で歩いたり、遠吠えをしたりして

オオカミに類似した行動や生活の様式を変容させることは容易ではなかった。

牧師夫人の心血を注いだ養育によって、すこしずつ言語を獲得したが、

ついに野性を脱却することができずに成長過程で死亡した。

野生児たちの記録からの貴重な示唆は、

第一に心身の発達には人間的環境が不可欠であること、

第二に心身の発達の適期にふさわしい教育の重要性、

第三に発達の適期を逃すと教育が困難になること、などである。

[井田範美・佐藤泰正]



『イタール著、古武弥正訳『アヴェロンの野生児』(1982・福村出版) 

▽J・A・L・シング著、中野善達・清水和子訳『狼に育てられた子』(1977・福村出版) 

▽C・マクリーン著、中野善達訳・編『ウルフ・チャイルド――カマラとアマラの物語』

(1984・福村出版)』


コメント

このブログの人気の投稿

重いものと軽いものを地面に落としたら?

重いものと軽いものを地面に落としたら どっちが早く落ちるのか? 結論からいうと、どちらも変わらない。 (*しかし、空気がある世界では、より軽く、よりやわらかく、 表面積が大きいものが 遅く落下する。 ペラペラの紙切れがゆっくり落ちていくのが最たる例である。) 物理学の世界では、 物体を自然と落とすことを 自由落下 という。 では、なぜ重いものと軽いものが 同時に落ちるのか、思考実験といわれる 頭の中で実験をして確かめてみよう。 空気抵抗が無いもの、つまり 真空中 と 仮定して話を進めてみる。 【真空中…空気が全くない状態。】 1gのものと、1gのものを同時に落としたら、 同じ速度で落下することは納得できると思う。 では、1gのものと2gのものは? と考えてみよう。 2gのものは1gのものを1+1=2個くっつけただけであり、 それ以上のものではない。 くっついたというだけのことで落下速度が速くなるのであれば、 分割すれば遅くなる ということが推論できる。 じゃぁドンドンと分割していくと、 そのうち落下しないで 空中に止まったままになるのか? とまぁこんな感じの思考実験をすることで ある程度納得できるのではないかと思いますが、どうだろうか ? では、実際に理論的に説明していこう。 重い物に働く重力の方が軽い物に働く重力より大きい。 重力 (mg) =質量 (m) ×比例係数 (g) … ① この公式は中学物理で出てくるものである。 比例定数は重力加速度=gと呼ばれ、 厳密には  g= 9.80665[m/s² ]  と定義されている。 同じ力を加えても 重い物 の方 が 軽い物 より 動かしにくい 。 加速度 ( a :   m /s 2 ) =加える力 ( F: N) /質量 ( m: kg)    … ②  ②…これを運動方程式という 【*物理学で力は記号でFを表す。単位はN。】 これも経験があるのではないだろうか。 次のような経験がないだろうか? ・同じ重さなら加える力が大きいほど良く加速する。 ・同じ力なら軽い物ほど良く加速する。 物体に加える力が重力だけの場合は、 ①を②に代入して、 加速度=加

儀礼的無関心

1,電車での出来事 電車の中では、 ふつうであれば夫婦や親子など 親密な関係にある人間しか 入ることを許されない密接距離や、 友人同士で用いられる個体距離のなかに 見知らぬ他人 が入りこんでくるということから、 別の規則が派生してくる。 私たちはたまたま電車で隣り合って座った人と 挨拶を交わたりしないし, ふつうは話しかけることもない。   私たちはあたかも 自分の 密接距離 や 個体距離 のなかに 人がいることに   気がつかないかのように、 それぞれ新聞や雑誌を読んだり、 ヘッドホンをつけ 音楽を聴いたり、携帯電話をチェックしたり、 ゲームをしたり,あるいは 目をつむって考えごとをしたりしている。 それはあたかも 物理的に失われた距離を心理的距離によって 埋め合わせているかのようである。 アメリカの社会学者 E. ゴフマン( 1922 ~ 82 )は, 公共空間のなかで人びとが示す このような態度を 儀礼的無関心 と呼んだ。 2、具体的に儀礼的無関心とは どのような状態で 行われるのか? 「そこで行なわれることは、 相手をちらっと見ることは見るが、 その時の表情は相手の存在を認識したことを 表わす程度にとどめるのが普通である。 そして、次の瞬間すぐに視線をそらし、 相手に対して特別の好奇心や 特別の意図がないことを示す。」 電車のなかで他の乗客にあからさまな 好奇心を向けることが 不適切とされるのはそのためである。 たとえば, 電車のなかで他の乗客をじろじろ眺めたり, 隣の人が読んでいる本を のぞきこんだりすることは不適切と感じられる。 例外は子どもである。 子どもは他の乗客を指差して 「あのおじさん変なマスクをしてる」 と言っても大目にみられるし, 逆に子どもに対してはじっと見つめることも, 話しかけることも許され

DLVOの理論

1,DLVOの理論とは 二つの 界面* が近づくときの、 【 *… 気体と 液体 、液体と液体、液体と 固体 、固体と固体、固体と 気体 のように、 二つの相が互いに接触している境界面】 電気二重層間の相互作用に基づいた 疎水コロイド溶液の安定性に関する理論。 これはデリャーギンと ランダウ (1941)と フェルヴァイとオーヴァベック(1948)が それぞれ独立に導いたので四人の名前で呼ばれている。 電解質水溶液中で、正または負に帯電している界面に対して、 反対符号の イオン はこれと中和するように分布すると考えると、 その濃度に基づく 電位  φ は界面からの距離  d  に関して 指数関数的に減少する。 すなわち φ=φ 0  exp(-κ d  ) となる。 φ 0  は界面に固定されるイオン層の電位で、 κ は定数であるが電気二重層の厚さを表現する基準となる値で である。 ここで, z  はイオン価, e  は電気素量、 n  はイオンの濃度(イオンの数/cm 3 )、 ε は溶液の誘電率、 k  は ボルツマン定数* 、 T  は絶対温度である。 共存イオンの影響で、電気二重層の厚さが変化すると考えると、 この式から シュルツェ‐ハーディの法則* も たくみに説明可能である。 リンク